edu.uah.math.distributions
Class CauchyDistribution
java.lang.Object
edu.uah.math.distributions.Distribution
edu.uah.math.distributions.StudentDistribution
edu.uah.math.distributions.CauchyDistribution
- All Implemented Interfaces:
- java.io.Serializable
public class CauchyDistribution
- extends StudentDistribution
- implements java.io.Serializable
This class models the Cauchy distribution.
- Version:
- August, 2003
- Author:
- Kyle Siegrist, Dawn Duehring
- See Also:
- Serialized Form
Method Summary |
double |
getCDF(double x)
This method computes the cumulative distribuiton function in closed form. |
double |
getQuantile(double p)
This method computes the quantile function in closed form. |
void |
setDegrees(int n)
This method sets the degrees of freedom which is fixed at 1. |
java.lang.String |
toString()
This method returns a string that gives the name of the distribution and the values of
the parameters. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
CauchyDistribution
public CauchyDistribution()
getCDF
public double getCDF(double x)
- This method computes the cumulative distribuiton function in closed form.
- Overrides:
getCDF
in class StudentDistribution
- Parameters:
x
- a number in the domain of the distribution
- Returns:
- the cumulative probability at x
- See Also:
betaCDF
getQuantile
public double getQuantile(double p)
- This method computes the quantile function in closed form.
- Overrides:
getQuantile
in class Distribution
- Parameters:
p
- a probability in (0, 1)
- Returns:
- the quantile of order p
setDegrees
public void setDegrees(int n)
- This method sets the degrees of freedom which is fixed at 1.
- Overrides:
setDegrees
in class StudentDistribution
- Parameters:
n
- the degrees of freedom
toString
public java.lang.String toString()
- This method returns a string that gives the name of the distribution and the values of
the parameters.
- Overrides:
toString
in class StudentDistribution
- Returns:
- a string giving the name of the distribution and the values of the parameters